Tuesday, 21 June 2022

MathWithNaziaa : BODMAS / PEMDAS / PEDMAS

  BODMAS / PEMDAS / PEDMAS


Brackets

— ,( ), { } , [ ] 

Parenthesis

Order / power

325

Exponents

Division

      / x

Multiplication

Multiplication

            x

Division

Addition

            +

Addition

Subtraction

            -

Subtraction


  1. 30 - [20 + { 60- ( 45 - 5 ) }]= 30 - [20 + { 60 - (45 -5 ) } ]

                                        = 30 - [ 20 + { 60 - 40 } ]

                                        = 30 -[ 20 + 20 ]

                                        = 30 - 40

                                        = -10


  1. 87 - [ 29 - { 9 3 - ( 27 -6 3 ) 3 } ]

                          = 87 - [ 29 - { 9 3 - ( 27 -2 ) 3 } ] 

                          = 87 - [ 29 - { 9 3 - 24 3 } ]        

                          = 87 - [ 29 - { 3 - 8 } ] 

                          = 87 - [ 29 - { -5} ]

                          = 87 - [ 29 + 5 ]

                          = 87 - 34

                          = 53


  1. -150 + [ { (-24) - 50 ( -10 + 16 2 -17 ) } + 120 ] 

            = - 150 + [ { (-24) - 50 ( -10 + 32 -17 ) } + 120 ] 

            = -150 + [ { ( - 24) - 50 ( 22 -17 ) } + 120 ] 

            = -150 + [ { (-24 ) - 50 5 } + 120 ] 

            = -150 + [ { ( -24 ) -10 } + 120 ] 

            = -150 + [ { -24 - 10 } + 120 ]

            = -150 + [ - 34 + 120 ] 

            = -150 + 86

            = -64


  1. 125 - [ - 20 of (-16) + {15 ( -5) } ] 

                           = 125 - [ -20 of ( -16 ) + { 15 -5 } ]

                           = 125 - [ - 20 of ( -16 ) + { -3 } ]

                           = 125 - [ - 20 -16 - 3 ] 

                           = 125 - [ 320 - 3 ]

                           = 125 - 317 

                           = -292



  1. -120 [ -45 - { (15 - 10 ) ( -18 - 15 ) } ]

                   = -120 [ - 45 - { 5 - 33 } ]

                   = -120 [ -45 - { - 165 } ]

                   = - 120 [ - 45 + 165 ]

                   = -120 [ 120 ] 

                   = -1



Example :


  1. (41/10) - [ 5/2 - { 5/6 - ( 2/5 + 3/10 - 4/15 ) } ] 

                 = 41/10- [ 5/2 - { 5/6 2/5 - 3/10 + 4/15 }]

                 = 41/10- [ 5/2 - 5/6 2/5 + 3/10 - 4/15  ] 

                 = 41/105/2 + 5/6 2/5 - 3/10 + 4/15 

                 = (246-150+50-24-18+16)/60  [ LCM OF 10,2,6,5,15=60]

                 = (246 + 50+ 16 -150 -24 -18)/60

                 = (312 - 192)/60

                 = 120/60

                 = 2


Example 2.


24/5 ÷ ( 3/5 of 5/1 ) + 4/5 x 3/10 - 1/5 

               = 24/5 ÷ ( 3/5 x 5/1 ) + 4/5 3/10 - 1/5

               = 24/5 ÷ 3 + 4/5 x 3/10 - 1/5

               = 24/5 x 1/3 + 4/5 x 3/10 - 1/5

               = 8/5 + 12/50 - 1/5  [ LCM of 5, 50 = 50 ]

               = (80 + 12 -10)/50

               = (92 - 10)/50

               = (82)/50 

               = (41)/25

                  = (1) (16)/25



Example 3 :

36/7 - { 33/10 ÷ ( 14/5 - 7/10 )} 

              = 36/7 - { 33/10 ( (28 -7)/10 )} [ LCM of 5, 10 is 10 ]

              = 36/7 - { 33/10 ÷ 21/10

              = 36/7 - { 33/10 x 10/21

              =  36/7 - 11/7  

              = 25/7

                      = 3 47



Example 4 :

24/5 ÷ { 11/5 - 1/2 ( 5/4 - 1/4 + 1/5 ) }

                  = 24/5 ÷ { 11/5 - 1/2 {( 25 - 5 +4)/20} [ LCM of 4, 5 = 20]

                         = 24/5 ÷ { 11/5 - 1/2 ( 24/20) }

                  = 24/5 ÷ { 11/5 - 1/2 x 24/20 }

                  = 24/5 ÷ { 11/5 - 3/5 }

                  =  24/5 ÷ 8/5

                  = 24/5 x 5/8

                  = 3





Example 5:

( 2/3 + 4/9 ) of 3/5 ÷ (1) 2/3 x (1) 1/4 - 1/3 

                = ( 6+4)/9 x 3/5 ÷ (1) 2/3 x (1) 1/4 - 1/3 [LCM of 3,9 =9]

                       = 10/9 x 3/5 ÷ 5/3 x 5/4 - 1/3

                = 2/3 ÷ 5/3 x 5/4 - 1/3

                = 2/3 x 3/5 x 5/4 - 1/3

                = 2/5 x 5/4 - 1/3

                = 1/2 - 1/3 [LCM of 2,3 = 6]

                = (3-2)/6

                = 1/6

                                   





No comments:

Post a Comment