Wednesday, 16 November 2022

                                QUESTION BASED ON TRIGONOMETRY



Questions based on trigonometry:



  1. In a triangle ABC, right angled at A; if AB= 12cm, AC=5cm. Find all the trigonometric ratios of angle B and C?

  


2. In a triangle ABC right angle that be. If AC equals 5 centimeters, BC equals 3 centimetre.Find 

  1. Sin A

  2. Cos C

  3. Tan A

  4. Cosec C

  5. Sec^2 A - Tan^2 A


3) In a right-angled triangle. If angle A is acute and cot A= 4/3. Find the remaining trigonometric ratio.


Given: CotA = 4/3 

           Base (AB) = 4

Perpendicular (BC) = 3

By using Pythagoras theorem 

     AC^2 =AB^2+BC^2 

             = 42 + 32

              = 16 +9

      AC^2= 25

      AC = 5




Sin A = Perpendicular/Hypotenuse = 3/5

Cos A = Base/Hypotenuse= 4/5  

Tan A = Perpendicular/Base=3/4     

Cosec A = Hypotenuse/Perpendicular= 5/3

Sec A = Hypotenuse/Base= 5/4



4) For the given figure, if cosˠ=513 and cosβ= 35 Find the length of BD?





In ABC, Cosˠ = 5/13 =BC/AC

                 If BC= 5k, AC= 13k

                 AC^2= BC^2+ BC^2

                 (13k) ^2= 12^2+ (5k) ^2

                  169 k^2 = 144 + 25 k^2

                   169k^2-25k^2 = 144

                    144 k^2= 144

                          k= 1


                   BC =5k

                   BC = 5m



In CDE, Cos β = 3/5 = CD/CE

                 If CD = 3p, CE = 5p

                 CE^2=CD^2 + DE^2

                  (5p) ^2=(3p) ^2 + 8^2

                   25p^2 = 9p^2+ 64

                   25p^2- 9p^2 = 64

                       16p^2 =64

                         p^2=4

                         p=2


                CD= 3P 

                CD = 6m

                BD =BC + CD

                BD = 11m




5) If sin B = ½, Show that 3cosB - 4COS^3B =0

 

Solution : We have, 

                sinB = ½ = perpendicular/hypotenuse

                So let us draw a right triangle ABC, right angled at C such that Perpendicular = AC=1 unit, Hypotenuse = AB = 2 units.

            

Applying Pythagoras theorem in ABC, We obtain

 

AB^2 = BC^2 + AC^2

BC^2 = AB^2 - AC^2

BC^2 = 2^2 - 1^2

BC^2 = 4-1

BC^2 = 3

BC = 3

cos B = BC/ AB = 3 /2

 

3 cosB - 4 cos^2 B = 3x 3 /2- 4 (3 / 2)^3

                               = 33 / 2 - 4x 33 / 8

                               = 33 / 2 - 33 / 2

                                = 0 

Hence proved 

     3 cos B - 4 cos^3 B = 0










No comments:

Post a Comment